You can drop rows of a Pandas DataFrame whose value in a certain column is NaN using the dropna() method. Here's an example:
python
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, None, 30, 22]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Drop rows where the 'Age' column has NaN values
df_cleaned = df.dropna(subset=['Age'])
print("\nDataFrame after dropping rows with NaN values in 'Age' column:")
print(df_cleaned)
Output:
sql
Original DataFrame:
      Name   Age
0    Alice  25.0
1      Bob   NaN
2  Charlie  30.0
3    David  22.0
DataFrame after dropping rows with NaN values in 'Age' column:
      Name   Age
0    Alice  25.0
2  Charlie  30.0
3    David  22.0
In this example:
- We create a sample DataFrame with the 'Name' and 'Age' columns.
 - The 
dropna()method is used to drop rows where the value in the 'Age' column is NaN. Thesubsetparameter specifies the column(s) to consider for NaN checking. - The resulting DataFrame 
df_cleanedcontains only the rows where the 'Age' column does not have NaN values. 
Remember that the dropna() method by default returns a new DataFrame with the NaN rows dropped, leaving the original DataFrame unchanged. If you want to modify the original DataFrame in-place, you can use the inplace=True parameter:
python
df.dropna(subset=['Age'], inplace=True)
Comments
Post a Comment