You can drop rows of a Pandas DataFrame whose value in a certain column is NaN using the dropna()
method. Here's an example:
python
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [25, None, 30, 22]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Drop rows where the 'Age' column has NaN values
df_cleaned = df.dropna(subset=['Age'])
print("\nDataFrame after dropping rows with NaN values in 'Age' column:")
print(df_cleaned)
Output:
sql
Original DataFrame:
Name Age
0 Alice 25.0
1 Bob NaN
2 Charlie 30.0
3 David 22.0
DataFrame after dropping rows with NaN values in 'Age' column:
Name Age
0 Alice 25.0
2 Charlie 30.0
3 David 22.0
In this example:
- We create a sample DataFrame with the 'Name' and 'Age' columns.
- The
dropna()
method is used to drop rows where the value in the 'Age' column is NaN. Thesubset
parameter specifies the column(s) to consider for NaN checking. - The resulting DataFrame
df_cleaned
contains only the rows where the 'Age' column does not have NaN values.
Remember that the dropna()
method by default returns a new DataFrame with the NaN rows dropped, leaving the original DataFrame unchanged. If you want to modify the original DataFrame in-place, you can use the inplace=True
parameter:
python
df.dropna(subset=['Age'], inplace=True)
Comments
Post a Comment